skip to main content


Search for: All records

Creators/Authors contains: "Eirin‐Lopez, Jose"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral (Acropora cervicornis) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity. 
    more » « less
    Free, publicly-accessible full text available December 9, 2024
  2. Larracuente, Amanda (Ed.)
    Abstract The methyltransferase like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef‐building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes ofAcropora cervicornisandA. palmatacorals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent inA. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)